Fragestellung: Wie berechnet man die Extremwerte, insbesondere Hoch- und Tiefpunkte, einer Funktion?
Der Weg zur Bestimmung der Extremwerte einer Funktion ist oft kurvenreich. In diesemgehen wir auf die Funktion \( f(x) = x^4 - 5x^2 + 4 \) ein. Wir setzen uns dabei intensiv mit der Berechnung von Hoch- und Tiefpunkten auseinander. Zuerst beschäftigen wir uns mit den Ableitungen der Funktion. Diese sind notwendig für die Berechnung der Extrempunkte. Die erste Ableitung lautet \( f'(x) = 4x^3 - 10x \). Der nächste Schritt besteht darin, diese Ableitung auf Null zu setzen.