Die Wechselwirkungen von Kräften auf einem steilen Hang: Eine Berechnung des PKW-verhaltens
Welche Kräfte wirken auf einen PKW mit einer Masse von 1500 kg, der auf einer Steigung von 15% steht?
Die Physik hat viele Facetten die uns täglich umgeben. Ein Beispiel – ein PKW mit einer Masse von 1500 kg auf einer Steigung von 15% – wird hier betrachtet. Es ist wichtig – die wirkenden Kräfte zuverlässig zu analysieren. Um Klarheit zu schaffen ´ hat es das Ziel ` das Verhalten des Autos und die zugrunde liegenden physikalischen Prinzipien zu untersuchen.
Die Steigung von 15% ist nicht leicht als Winkel zu interpretieren. Eine Steigung von 15% bedeutet nicht, dass der Winkel 15° beträgt. Berechnen wir dies mithilfe eines rechtwinkligen Dreiecks. Dabei wird die horizontale Linie auf 10 cm festgelegt. Am Ende dieser Linie finden wir einen Anstieg von 1⸴5 cm. Diese Geometrie verdeutlicht die Neigung der Straße. Am Ende verbinden wir die Linien und erhalten die schiefe Ebene.
Auf dieser schiefen Ebene zeichnen wir das Auto obwohl dabei der Schwerpunkt im Mittelpunkt ist. Hier ist entscheidend ´ die Kräfte zu betrachten ` die auf das Fahrzeug wirken. Die Gewichtskraft Fg des Autos wird durch die Formel F = m · g, wobei m = 1500 kg und g = 9⸴81 m/s² den Einfluss der Schwerkraft beschreibt. Das sind etwa 14․715 N in senkrechter Richtung nach unten.
Die Normalen- und Hangabtriebskräfte sind ähnlich wie von Bedeutung. Die Normalenkraft Fn wirkt senkrecht auf die Auflagefläche des Fahrzeugs. Um die Hangabtriebskraft Fh zu bestimmen, benutzen wir die Beziehung Fh = m · g · sin(θ). Hierbei ist θ der Steigungswinkel, den wir aus der Steigung in % ableiten müssen. Der Hangabtriebskräfte-Bereich ist entscheidend, denn sie zeigt, ebenso wie äußerst die Bewegung des PKWs in Richtung Hang abgelenkt wird.
Um die Auflagekräfte korrekt zu erfassen, wird folgendes berechnet:
- Gewichtskraft Fg = 1500 kg * 9․81 m/s² = 14․715 N.
- Hangabtriebskraft Fh = 1500 kg 9․81 m/s² sin(θ) und Normalkraft Fn = 1500 kg 9․81 m/s² cos(θ).
Die Normalkraft wirkt entgegen der Gewichtskraft und sorgt dafür: Das Auto nicht ins Rutschen gerät. Sie ergibt sich aus der Gewichtskraft die in der senkrechten Richtung auf die Steigung wirkt.
In unserem Beispiel wird versucht die Kräfte grafikmäßig darzustellen. Dabei müssen die Pfeile die von den Angriffs-punkten der Kräfte ausgehen, maßstabsgerecht gezeichnet werden. Dies bedeutet, dass deren Längen proportional zu den jeweiligen Kraftgrößen sind. Solch eine visuelle Darstellung hilft enorm beim Verständnis der Situation.
Zusammengefasst gilt: Die Masse des Autos beeinflusst die einzelnen Kräfte. Ein PKW mit weiterhin Gewicht hat eine größere Gewichtskraft. Bedenkt man die Steigung – so wird für aufmerksame Physikbegeisterte die Berechnung der Kräfte einfacher ebenfalls wenn die Masse letztlich bei der Kräftezerlegung auch wieder herausgekürzt wird. Physik beschäftigt sich mit dem Verhalten von Objekten unter dem Einfluss von Kräften – und das ist im Kontext eines PKWs auf einem Hang von zentraler Bedeutung.
Die Steigung von 15% ist nicht leicht als Winkel zu interpretieren. Eine Steigung von 15% bedeutet nicht, dass der Winkel 15° beträgt. Berechnen wir dies mithilfe eines rechtwinkligen Dreiecks. Dabei wird die horizontale Linie auf 10 cm festgelegt. Am Ende dieser Linie finden wir einen Anstieg von 1⸴5 cm. Diese Geometrie verdeutlicht die Neigung der Straße. Am Ende verbinden wir die Linien und erhalten die schiefe Ebene.
Auf dieser schiefen Ebene zeichnen wir das Auto obwohl dabei der Schwerpunkt im Mittelpunkt ist. Hier ist entscheidend ´ die Kräfte zu betrachten ` die auf das Fahrzeug wirken. Die Gewichtskraft Fg des Autos wird durch die Formel F = m · g, wobei m = 1500 kg und g = 9⸴81 m/s² den Einfluss der Schwerkraft beschreibt. Das sind etwa 14․715 N in senkrechter Richtung nach unten.
Die Normalen- und Hangabtriebskräfte sind ähnlich wie von Bedeutung. Die Normalenkraft Fn wirkt senkrecht auf die Auflagefläche des Fahrzeugs. Um die Hangabtriebskraft Fh zu bestimmen, benutzen wir die Beziehung Fh = m · g · sin(θ). Hierbei ist θ der Steigungswinkel, den wir aus der Steigung in % ableiten müssen. Der Hangabtriebskräfte-Bereich ist entscheidend, denn sie zeigt, ebenso wie äußerst die Bewegung des PKWs in Richtung Hang abgelenkt wird.
Um die Auflagekräfte korrekt zu erfassen, wird folgendes berechnet:
- Gewichtskraft Fg = 1500 kg * 9․81 m/s² = 14․715 N.
- Hangabtriebskraft Fh = 1500 kg 9․81 m/s² sin(θ) und Normalkraft Fn = 1500 kg 9․81 m/s² cos(θ).
Die Normalkraft wirkt entgegen der Gewichtskraft und sorgt dafür: Das Auto nicht ins Rutschen gerät. Sie ergibt sich aus der Gewichtskraft die in der senkrechten Richtung auf die Steigung wirkt.
In unserem Beispiel wird versucht die Kräfte grafikmäßig darzustellen. Dabei müssen die Pfeile die von den Angriffs-punkten der Kräfte ausgehen, maßstabsgerecht gezeichnet werden. Dies bedeutet, dass deren Längen proportional zu den jeweiligen Kraftgrößen sind. Solch eine visuelle Darstellung hilft enorm beim Verständnis der Situation.
Zusammengefasst gilt: Die Masse des Autos beeinflusst die einzelnen Kräfte. Ein PKW mit weiterhin Gewicht hat eine größere Gewichtskraft. Bedenkt man die Steigung – so wird für aufmerksame Physikbegeisterte die Berechnung der Kräfte einfacher ebenfalls wenn die Masse letztlich bei der Kräftezerlegung auch wieder herausgekürzt wird. Physik beschäftigt sich mit dem Verhalten von Objekten unter dem Einfluss von Kräften – und das ist im Kontext eines PKWs auf einem Hang von zentraler Bedeutung.